Output in Window Systems and
Toolkits

Georgia
Tech &

—




' XXX
0000
Georgia @ ::::
Tech: oo

Interactive System Layers o




0000
00066
Georgia eo0
. Tech@ 3
Because of commercial pressure: N

0S




' TXX)

] o000
Georgia oo0o

Tech ot

—

Window Systems




Output (and input) normally | 332,
done in context of a window Geqdny | 332
system

® Should be familiar to all
® Developed to support metaphor of overlapping pieces of
paper on a desk (desktop metaphor)
Good use of limited space
leverages human memory

Good/rich conceptual model




A little history...

The BitBIt algorithm

® Dan Ingalls,“Bit Block Transfer”

® (Factoid: Same guy also invented pop-up menus)
Introduced in Smalltalk 80

Enabled real-time interaction with windows
in the Ul

Why important!?
o Allowed fast transfer of blocks of bits between
main memory and display memory

® Fast transfer required for multiple overlapping windows

o Xerox Alto had a BitBlt machine instruction

Georgia
Tech

---------------------

""""""

ernan

reanForm.al

Fig.
A
L L

I




Georgia |
Tech |

Goals of window systems

® Virtual devices (central goal)
virtual display abstraction
multiple raster surfaces to draw on
implemented on a single raster surface
illusion of contiguous non-overlapping surfaces




(YY)
XY X
| | eeee
Georgia | eeoe
Tech : bt

Virtual devices

® Also multiplexing of physical input devices
® May provide simulated or higher level “devices”

® Opverall better use of very limited resources (e.g. screen
space)

strong analogy to operating systems

Each application “owns” its own windows

Centralized support within the OS (usually)
X Windows: client/server running in user space
SunTools: window system runs in kernel
Windows/Mac: combination of both




Georgia |
Tech |

Window system goals: Uniformity

¢ Uniformity of interface
two interfaces: Ul and API
¢ Uniformity of Ul
consistent “face” to the user

allows / enforces some uniformity across applications
but this is mostly done by toolkit




o000
o000
| | eeee
Georgia | eee
Tech | 2°

Uniformity

® Uniformity of API
provides virtual device abstraction
performs low level (e.g., drawing) operations
independent of actual devices
typically provides ways to integrate applications

minimum: cut and paste

10




o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

Other issues in window systems

® Hierarchical windows
some systems allow windows within windows
don’t have to stick to analogs of physical display devices
child windows normally on top of parent and clipped to it

11




o000
XX
| eee®e®
Georgia | eeoe
Tech | 2°

Issue: hierarchical windows

® Need at least 2 level hierarchy

Root window and “app” level

® Hierarchy turns out not to be that useful
Toolkit containers do the same kind of job (typically better)

12




Issue: damage / redraw
mechanism

® Windows suffer “damage” when they are obscured then

exposed (and when resized)

Georgia
Tech

&

13




I [ X
Georgia | eeoe
Tech| | %°

Damage / redraw mechanism

® Windows suffer “damage” when they are obscured then
exposed (and when resized)

Wrong contents,
needs redraw

-/

14




Damage / redraw, how muchis ~ Gegraia
exposed? .

® System may or may not maintain (and restore) obscured
portions of windows

“Retained contents’” model

For non-retained contents, application has to be asked to
recreate / redraw damaged parts

15




Damage / redraw, how muchis ~ Gegraia
exposed? .

Have to be prepared to redraw anyway since larger windows
create “new’”’ content area

But retained contents model is still very convenient (and
efficient)

AWT doesn’t do this, its optional under Swing

16




o000
o000
| | eoeee
Georgia | eee
Tech | 2°

Output in Toolkits

® QOutput (like most things) is organized around the
interactor tree structure

Each object knows how to draw (and do other tasks)
according to what it is, plus capabilities of children

Generic tasks, specialized to specific subclasses

17




Output Tasks in Toolkits

® Recall 3 main tasks
Damage management

Layout
(Re)draw

|
Georgia |

| ee®
Tech -

18




(YY)
' YY)
|| eee
Georgia | eeoe
o0

o

Tech |
Damage Management *

® [nteractors draw on a certain screen area

® When screen image changes, need to schedule a redraw

Typically can’t “just draw it” because others may overlap or
affect image

Would like to optimize redraw

19




o000
| eee®®
| | eeee
Georgia | eeoe
Tech | 2°

Damage Management

® Typical scheme (e.g.,in Swing) is to have each
object report its own damage
Tells parent, which tells parent, etc.
Collect damaged region at top
Arrange for redraw of damaged area(s) at the top
Typically batched
Normally one enclosing rectangle

20




e00
0000
| | eeee
Georgia | eeo
Tech | | 2°

Redraw

® |n response to damage, system schedules a redraw

® When redraw done, need to first ensure that everything is
in the right place and is the right size

» Layout

21




Can We Just Size and Position as Ge%ggg@ 3T

We Draw! )

22




Can We Just Size and Position as Geergia |

We Draw? .

® No.
Layout of first child might depend on last child’s size

Arbitrary dependencies
May not follow redraw order

® Need to complete layout prior to starting to draw

23




Layout Details

® |ater in the course...

® But again, often tree structured
E.g.,implemented as a traversal
Local part of layout +
Ask children to lay themselves out

Georgia
Tech |

24




Georgia
Tech |

(Re)draw

® Each object knows how to create its own
appearance

Local drawing + request children to draw selves
(W tree traversal)

® Systems vary in details such as coordinate
systems & clipping

E.g., Swing has parents clip children

25




Georgia
Tech

&

26




