Output in Window Systems and
Toolkits
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Window Systems




Output (and input) normally | 332,
done in context of a window Geqdny | 332
system

® Should be familiar to all
® Developed to support metaphor of overlapping pieces of
paper on a desk (desktop metaphor)
Good use of limited space
leverages human memory

Good/rich conceptual model




A little history...

The BitBIt algorithm

® Dan Ingalls,“Bit Block Transfer”

® (Factoid: Same guy also invented pop-up menus)
Introduced in Smalltalk 80

Enabled real-time interaction with windows
in the Ul

Why important!?
o Allowed fast transfer of blocks of bits between
main memory and display memory

® Fast transfer required for multiple overlapping windows

o Xerox Alto had a BitBlt machine instruction
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Goals of window systems

® Virtual devices (central goal)
virtual display abstraction
multiple raster surfaces to draw on
implemented on a single raster surface
illusion of contiguous non-overlapping surfaces
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Virtual devices

® Also multiplexing of physical input devices
® May provide simulated or higher level “devices”

® Opverall better use of very limited resources (e.g. screen
space)

strong analogy to operating systems

Each application “owns” its own windows

Centralized support within the OS (usually)
X Windows: client/server running in user space
SunTools: window system runs in kernel
Windows/Mac: combination of both
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Window system goals: Uniformity

¢ Uniformity of interface
two interfaces: Ul and API
¢ Uniformity of Ul
consistent “face” to the user

allows / enforces some uniformity across applications
but this is mostly done by toolkit
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Uniformity

® Uniformity of API
provides virtual device abstraction
performs low level (e.g., drawing) operations
independent of actual devices
typically provides ways to integrate applications

minimum: cut and paste
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Other issues in window systems

® Hierarchical windows
some systems allow windows within windows
don’t have to stick to analogs of physical display devices
child windows normally on top of parent and clipped to it
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Issue: hierarchical windows

® Need at least 2 level hierarchy

Root window and “app” level

® Hierarchy turns out not to be that useful
Toolkit containers do the same kind of job (typically better)

12




Issue: damage / redraw
mechanism

® Windows suffer “damage” when they are obscured then

exposed (and when resized)
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Damage / redraw mechanism

® Windows suffer “damage” when they are obscured then
exposed (and when resized)

Wrong contents,
needs redraw

-/
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Damage / redraw, how muchis ~ Gegraia
exposed? .

® System may or may not maintain (and restore) obscured
portions of windows

“Retained contents’” model

For non-retained contents, application has to be asked to
recreate / redraw damaged parts
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Damage / redraw, how muchis ~ Gegraia
exposed? .

Have to be prepared to redraw anyway since larger windows
create “new’”’ content area

But retained contents model is still very convenient (and
efficient)

AWT doesn’t do this, its optional under Swing
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Output in Toolkits

® QOutput (like most things) is organized around the
interactor tree structure

Each object knows how to draw (and do other tasks)
according to what it is, plus capabilities of children

Generic tasks, specialized to specific subclasses
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Output Tasks in Toolkits

® Recall 3 main tasks
Damage management

Layout
(Re)draw
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Damage Management *

® [nteractors draw on a certain screen area

® When screen image changes, need to schedule a redraw

Typically can’t “just draw it” because others may overlap or
affect image

Would like to optimize redraw

19




o000
| eee®®
| | eeee
Georgia | eeoe
Tech | 2°

Damage Management

® Typical scheme (e.g.,in Swing) is to have each
object report its own damage
Tells parent, which tells parent, etc.
Collect damaged region at top
Arrange for redraw of damaged area(s) at the top
Typically batched
Normally one enclosing rectangle
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Redraw

® |n response to damage, system schedules a redraw

® When redraw done, need to first ensure that everything is
in the right place and is the right size

» Layout
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Can We Just Size and Position as Ge%ggg@ 3T

We Draw! )
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Can We Just Size and Position as Geergia |

We Draw? .

® No.
Layout of first child might depend on last child’s size

Arbitrary dependencies
May not follow redraw order

® Need to complete layout prior to starting to draw
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Layout Details

® |ater in the course...

® But again, often tree structured
E.g.,implemented as a traversal
Local part of layout +
Ask children to lay themselves out
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(Re)draw

® Each object knows how to create its own
appearance

Local drawing + request children to draw selves
(W tree traversal)

® Systems vary in details such as coordinate
systems & clipping

E.g., Swing has parents clip children
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