

Output in Window Systems and
Toolkits

2

Interactive System Layers

I/O Hardware

OS

Window System

Toolkit

Interactive Application

Basic Drawing & Input

I/O Hardware

OS

Window System

Toolkit

Interactive Application

Basic Drawing & Input

3

 Because of commercial pressure:

OS

4

Window Systems

5

Output (and input) normally
done in context of a window
system
 Should be familiar to all
 Developed to support metaphor of overlapping pieces of

paper on a desk (desktop metaphor)
 Good use of limited space

 leverages human memory
 Good/rich conceptual model

A little history...
 The BitBlt algorithm

 Dan Ingalls, “Bit Block Transfer”

 (Factoid: Same guy also invented pop-up menus)

 Introduced in Smalltalk 80
 Enabled real-time interaction with windows

in the UI

 Why important?
 Allowed fast transfer of blocks of bits between

main memory and display memory

 Fast transfer required for multiple overlapping windows

 Xerox Alto had a BitBlt machine instruction

6

7

Goals of window systems

 Virtual devices (central goal)
 virtual display abstraction

 multiple raster surfaces to draw on
 implemented on a single raster surface
 illusion of contiguous non-overlapping surfaces

8

Virtual devices

 Also multiplexing of physical input devices
 May provide simulated or higher level “devices”
 Overall better use of very limited resources (e.g. screen

space)
 strong analogy to operating systems
 Each application “owns” its own windows
 Centralized support within the OS (usually)

 X Windows: client/server running in user space
 SunTools: window system runs in kernel
 Windows/Mac: combination of both

9

Window system goals: Uniformity

 Uniformity of interface
 two interfaces: UI and API

 Uniformity of UI
 consistent “face” to the user
 allows / enforces some uniformity across applications

 but this is mostly done by toolkit

10

Uniformity

 Uniformity of API
 provides virtual device abstraction
 performs low level (e.g., drawing) operations

 independent of actual devices
 typically provides ways to integrate applications

 minimum: cut and paste

11

Other issues in window systems

 Hierarchical windows
 some systems allow windows within windows

 don’t have to stick to analogs of physical display devices
 child windows normally on top of parent and clipped to it

12

Issue: hierarchical windows

 Need at least 2 level hierarchy
 Root window and “app” level

 Hierarchy turns out not to be that useful
 Toolkit containers do the same kind of job (typically better)

13

Issue: damage / redraw
mechanism

 Windows suffer “damage” when they are obscured then
exposed (and when resized)

14

Damage / redraw mechanism

 Windows suffer “damage” when they are obscured then
exposed (and when resized)

Wrong contents,
needs redraw

15

Damage / redraw, how much is
exposed?

 System may or may not maintain (and restore) obscured
portions of windows
 “Retained contents” model
 For non-retained contents, application has to be asked to

recreate / redraw damaged parts

16

Damage / redraw, how much is
exposed?

 Have to be prepared to redraw anyway since larger windows
create “new” content area

 But retained contents model is still very convenient (and
efficient)
 AWT doesn’t do this, its optional under Swing

17

Output in Toolkits

 Output (like most things) is organized around the
interactor tree structure
 Each object knows how to draw (and do other tasks)

according to what it is, plus capabilities of children
 Generic tasks, specialized to specific subclasses

18

Output Tasks in Toolkits

 Recall 3 main tasks
 Damage management
 Layout
 (Re)draw

19

Damage Management

 Interactors draw on a certain screen area
 When screen image changes, need to schedule a redraw

 Typically can’t “just draw it” because others may overlap or
affect image

 Would like to optimize redraw

20

Damage Management

 Typical scheme (e.g., in Swing) is to have each
object report its own damage
 Tells parent, which tells parent, etc.
 Collect damaged region at top
 Arrange for redraw of damaged area(s) at the top

 Typically batched
 Normally one enclosing rectangle

21

Redraw

 In response to damage, system schedules a redraw
 When redraw done, need to first ensure that everything is

in the right place and is the right size

  Layout

22

Can We Just Size and Position as
We Draw?

23

Can We Just Size and Position as
We Draw?

 No.
 Layout of first child might depend on last child’s size

 Arbitrary dependencies
 May not follow redraw order

 Need to complete layout prior to starting to draw

24

Layout Details

 Later in the course…

 But again, often tree structured
 E.g., implemented as a traversal

Local part of layout +
Ask children to lay themselves out

25

(Re)draw

 Each object knows how to create its own
appearance
 Local drawing + request children to draw selves

( tree traversal)
 Systems vary in details such as coordinate

systems & clipping
 E.g., Swing has parents clip children

26

